Spring 春天Basic 基础Coord.Object 对象Display 展示

Object Properties

对象属性

Type

类型

Linear

线性

This Spring type will create a linear, straight spiral-shaped spring between Object A and Object B. The location of the Spring is irrelevant in this case (unless one of the objects was not defined).

这种弹簧类型将在物体 a 和物体 b 之间产生一个直线的螺旋形弹簧。在这种情况下,Spring 的位置是不相关的(除非其中一个对象没有定义)。

Angle Spring

天使弹簧

This Spring type will create an angular spring - a spring that generates torque (its origin lies at the object’s center of mass). In the past, this type of spring was used in the manufacture of watch movements. This Spring should be located at the common center of rotation of both objects.

这种弹簧类型将产生一个角弹簧——一个产生扭矩的弹簧(它的起点位于物体的重心)。在过去,这种类型的弹簧用于制造手表机芯。这个弹簧应该位于两个物体旋转的共同中心。

Linear + Angle Spring

线性 + 角度弹簧

Both of the Spring types mentioned above will have an effect.

上面提到的两种 Spring 类型都会产生影响。

Object A
Object B

对象 a 对象 b

Object fields A and B can be found in the following Dynamics objects:

对象字段 a 和 b 可以在下面的 Dynamics 对象中找到:

These 3 objects each connect 2 objects using different methods.

这3个对象分别使用不同的方法连接2个对象。

Both objects can be dragged into the Object A and Object B fields, respectively. If one of the Object fields is left empty, the following will result:

这两个对象可以分别拖动到 Object a 和 Object b 字段中。如果其中一个 Object 字段为空,则会产生以下结果:

Except when using the Ragdoll and Wheel Suspension modes, it does not play a role in which order the objects to be connected are dragged into the Object A and Object B.

除非使用 Ragdoll 和车轮悬挂模式,否则它不会扮演将要连接的对象拖动到对象 a 和对象 b 中的角色。

If an Object field is left empty when using Motor Dynamics: According to the laws of physics (actio=reaction), when one body exerts force on another, the second body exerts a collinear force on the first equal in magnitude but oppositely directed. This condition is met when each field contains an object. A good example is that of a helicopter: The rotor blades are driven by a motor and rotate accordingly. Simultaneously a colinear force is exerted on the helicopter’s fuselage. The tail rotor compensates for this - otherwise the fuselage would rotate around its vertical axis.

如果在使用运动动力学时一个物体场是空的: 根据物理定律(actio = reaction) ,当一个物体对另一个物体施加力时,第二个物体对第一个同等大小的物体施加一个共线力,但方向相反。当每个字段包含一个对象时,就满足了这个条件。一个很好的例子是直升机: 旋翼桨叶由电机驱动并相应地旋转。同时对直升机机身施加共线力。尾桨补偿了这一点,否则机身将围绕其垂直轴旋转。

Reference Axis A
Reference Axis B

参考轴为参考轴 b

Reference axes are needed wherever a rotation needs to be measured, as is the case with a Connector with a rotational movement and a rotational spring. In both cases, the rotational movement can be restricted to a specific range. Both the Connector and the rotational spring must lie on the same rotational plane.

在需要测量旋转的任何地方都需要参考轴,例如带有旋转运动和旋转弹簧的连接器。在这两种情况下,旋转运动可以限制在一个特定的范围内。连接器和旋转弹簧都必须位于同一旋转平面上。

Connectors

连接器

Take a good look at the image above. The rotational angle of both Connectors is restricted and have a limit stop and a limit stop display. Note how the limit stop display (belongs to Object B) aligns itself exactly parallel to the axis of Object B. The same is true for the limit stop.

仔细看看上面的图片。两个连接器的旋转角度受到限制,并有限制停止和限制停止显示。注意限制停止显示(属于对象 b)是如何与对象 b 的轴线完全平行的。限位止损也是如此。

You also see that selecting the Y of Object option would not make sense here because neither limit stop nor limit stop display could align themselves accordingly.

您还可以看到,选择 y of Object 选项在这里是没有意义的,因为无论是限制停止还是限制停止显示都无法相应地对齐自己。

Let’s say the Connector lies exactly on the object axis of Object A. If Reference Axis A were set to Direction to Object the Connector would be very confused because the Connector and the object would be exactly the same. One of the object axes would have to be defined.

假设连接器正好位于对象 a 的对象轴上。如果参考轴 a 被设置为方向对象,那么连接器就会非常混乱,因为连接器和对象是完全相同的。必须定义一个物体轴。

Torsion Springs

扭转弹簧

A torsion spring behaves similarly. Note how each blue spring "end" aligns itself to the defined axis, respectively. Selecting the X to Object option would not make sense in this case.

扭转弹簧具有类似的性质。请注意每个蓝色弹簧“末端”如何分别将自己排列到定义的轴上。在这种情况下,选择 x to Object 选项没有意义。

Many times you will not have to manually adjust the reference axes at all. This is necessary in such cases as described above in order to avoid Gimbal Lock. Imagine the Connector or spring are angled forward 90° in reference to the image above. This is where Gimbal Lock would occur. You can avoid this if you - as we suggested - align Connectors and torsion springs correctly in the Viewport (i.e. acording to their direction of rotation).

很多时候,根本不需要手动调整参考轴。为了避免万向节锁定,在上述情况下这是必要的。想象连接器或弹簧向前倾斜90 ° ,参考上面的图像。这里就是万向节锁定的地方。你可以避免这种情况,如果你-正如我们建议的-在视窗中正确对齐连接器和扭转弹簧(即根据它们的旋转方向)。

This might sound a little complicated but you can get a better grip on this by simply experimenting with the parameters. Just make sure you keep an eye on the limit stop and limit stop display when modifying parameter values:

这可能听起来有点复杂,但是你可以通过简单的参数实验来更好地理解这一点。只要确保你在修改参数值的时候注意极限停止和极限停止显示:

Limit stop and limit stop display for various Connectors. 限制各种连接器的停止和限制停止显示

Attachment A
Attachment B

附件 a 附件 b

An ascending Zeppelin is being held in place using a Connector with various restraining lines. 一个上升的齐柏林飞艇正在使用一个带有各种限制线的连接器被固定在适当的地方

Wherever forces guide an object, the point on the object at which this occurs is important. For example, if a motor that pushes a Hard Body object along is located at that object’s center of mass, the object will be moved in a straight line (in the absence of any other forces). If the force affects the object outside of its center of mass, torque will automatically be generated and the object will rotate.

无论力在哪里引导物体,物体上发生这种情况的点都很重要。例如,如果一个推动一个硬体物体的发动机位于该物体的重心,该物体将被直线移动(在没有任何其他力的情况下)。如果力作用在物体质心以外的地方,就会自动产生扭矩,物体就会旋转。

Soft Body objects, however, behave differently. Each object point is connected via springs to other points. If a force affects only a single point an unwanted result can be produced. However, the effect can be spread to larger regions:

然而,柔软的身体对象的行为却不同。每个物体点通过弹簧连接到其他点。如果一个力只影响一个点,就会产生不希望的结果。然而,这种影响可以扩散到更大的地区:

The Attachment A and Attachment B parameters are available for the following Dynamics objects:

附件 a 和附件 b 的参数可用于下列动态对象:

Center of Mass

质心

This option contains no additional settings. The force is generated at the center of the given object’s mass. No deformations will occur on Soft Body objects.

此选项不包含其他设置。力是在给定物体的质量中心产生的。柔软的物体不会发生变形。

Polygon Point

多边形点

This option lets you select a specific object point at which the force will have its origin. The Region of Influence value lets you increase (or decrease) the region around this point within which the force will affect the object. This is only relevant for Soft Body objects and has no effect when applied to Rigid Body in conjunction with Connectors.

这个选项允许您选择一个特定的对象点,在这个点上力将有它的原点。“影响区域”值允许您增加(或减少)力将影响对象的这一点周围的区域。这只是相关的软体对象,并没有影响时,适用于刚体与连接器。

Point Selection

选点

Force can also be applied via Maps (Point Selections tag oder Vertex-Maps). Additional parameters will be made available with which you can, for example, adjust the degree to which the selected (or weighted) points can be affected.

力也可以通过地图应用(点选择标签或顶点地图)。额外的参数将可用,例如,您可以调整选定(或加权)点可能受到影响的程度。

Index[-2147483648..2147483647]
Index[-2147483648..2147483647]

索引[-2147483648. . 2147483647]索引[-2147483648.2147483647]

This is the object’s index number. Internally, all of a polygonal object’s points (including generated points) are numbered. This is displayed interactively in the Viewport when you browse the values.

这是对象的索引号。在内部,一个多边形物体的所有点(包括生成的点)都被编号。当您浏览这些值时,它会以交互方式显示在 Viewport 中。

All object points (however, only for polygonal objects) are listed in the Structure Manager.

所有对象点(但是,只针对多边形对象)都在 Structure Manager 中列出。

Map
Map

You can drag a Point Selection tag or a Vertex Map into this field.

可以将“点选择”标记或“顶点映射”拖动到此字段中。

Region Of Influence[1..1000%]
Region Of Influence[1..1000%]

势力范围[1. . 1000% ]势力范围[1. . 1000% ]

Since it is not that easy for Soft Bodies to process the effect of a force on a single object point (this often looks unrealistic), the Region of Influence parameter can be used to define a region around a point within which the effect of a force can be introduced. A value of 100% will include the entire mesh. In doing so, the polygon point (or polygon selection) itself will be weighted with 100% and the point most distant from it with 0%. When lesser values are used correspondingly fewer points will be affected by the force. A value of around 1% will only affect the selected point or selection (however, internally larger values will in fact be in effect as a result of a built-in protective mechanism).

由于软体处理单个物体点上的力的影响并不那么容易(这通常看起来不现实) ,因此可以使用影响区域参数来定义一个点周围的区域,在这个区域内可以引入力的影响。一个100% 的值将包括整个网格。在这样做,多边形点(或多边形选择)本身将加权100% 和最远的点从它的0% 。当使用较小的值时,相应地受力影响的点较少。大约1% 的值只会影响选定的点或选择(然而,内部较大的值实际上将作为内置保护机制的结果)。

A lesser value can be useful if you want to couple larger regions defined via point selection to Dynamics Connectors, Springs or Motors (e.g., a tubular Soft Body that is connected via a Connector to a circle).

如果你想通过点选择连接到 Dynamics Connectors,Springs 或者 Motors (例如,通过 Connector 连接到一个圆形的管状软体)来连接较大的区域,一个较小的值也是有用的。

Shape Conservation[0..+∞]
Shape Conservation[0..+∞]

形状守恒[0. . + ∞]形状守恒[0. . + ∞]

Highlighted point selection on a 突出显示的点选择Soft Body 柔软的身体 is pulled by a spring whilst a sphere simultaneously falls onto it. Top right: low 是由弹簧拉动的,同时球体落在上面。右上角: 低Shape Conservation 形状保护 value; bottom right: higher 右下角: 更高Shape Conservation 形状保护 value. 价值

This value defines the degree to which the selection or point geometry affected by a vertex map can be deformed by a force. Lesser values result in greater deformations; increasing values result in correspondingly lesser deformations.

这个值定义了受顶点映射影响的选择点或点几何形状可以被力变形的程度。较小的值导致较大的变形,增大的值导致相应较小的变形。

Damping[0..+∞%]
Damping[0..+∞%]

阻尼[0. . + ∞% ]阻尼[0. . + ∞% ]

Returning an object to its original shape is done using springs, whose damping is adjusted using this value. Lower values increase the stiffness of the effect.

将物体恢复到原来的形状是通过弹簧完成的,弹簧的阻尼是通过这个值来调整的。较低的值增加了效果的刚度。

Apply

申请

As mentioned in the description of Object A, "action = Reaction" applies for both objects. Use this setting if you want force or torque to affect one of the objects in a non-realistic manner.

正如在对象 a 的描述中所提到的,“作用 = 反作用”适用于这两个对象。如果您希望以非现实的方式使用力或扭矩来影响其中一个物体,请使用此设置。

Rest Length[0..+∞m]
Rest Angle[-∞..+∞°]
Set Rest Length
Set Rest Angle

静止长度[0. . + ∞ m ]静止角[-∞ . . + ∞ ° ]设置静止长度集静止角

A spring’s actual length is its length at its state of rest, when it exerts no force. Use the Set Rest Angle button to define the Spring’s current length as its length.

弹簧的实际长度是它在静止状态下的长度,当它不施加任何力时。使用 Set Rest Angle 按钮将 Spring 的当前长度定义为其长度。

Stiffness[0..+∞]
Stiffness[0..+∞]

刚度[0. . + ∞]刚度[0. . + ∞]

A spring’s stiffness (known in physics as "spring constant") defines the degree of force required to expand or compress the spring. The more stiff a spring is, the more difficult it will be to expand or compress it (and the faster it will oscillate).

弹簧的刚度(在物理学中称为“弹簧常数”)决定了弹簧膨胀或压缩所需的力度。弹簧越坚硬,就越难以扩张或压缩(而且摆动的速度也越快)。

Damping[0..+∞%]
Damping[0..+∞%]

阻尼[0. . + ∞% ]阻尼[0. . + ∞% ]

All springs eventually stop oscillating. The speed with which a spring comes to rest depends on the friction of the material from which it is made. This effect is simulated in Dynamics using the Damping value. If set to 0 the Spring will oscillate indefinitely (unless a linked object has its own Damping value defined). The higher the Damping value, the faster a Spring will stop oscillating.

所有的弹簧最终都停止振动。弹簧静止的速度取决于制造弹簧的材质的摩擦力。利用阻尼值对这种效果进行了动力学仿真。如果设置为0,弹簧将无限期地振荡(除非链接对象定义了自己的阻尼值)。阻尼值越高,弹簧停止振动的速度越快。

Modified and broken springs

改良弹簧和断裂弹簧

These values affect the modification of the spring’s 这些值会影响弹簧的修改Rest Length 静止长度. By the same token, the Angle spring values only affect the angular movement. .同理,角弹簧的大小只影响角运动

Elastic Stretch Limit
Value[0..+∞m]

弹性拉伸极限值[0. . + ∞ m ]

Elastic Compression Limit
Value[0..+∞m]

弹性压缩极限值[0. . + ∞ m ]

Elastic Stretch Limit
Value[0..+∞°]

弹性拉伸极限值[0. . + ∞ ° ]

Elastic Compression Limit
Value[0..+∞°]

弹性压缩极限值[0. . + ∞ ° ]

As long as a Spring is stretched within the defined limits (starting from the Rest Length or Rest Angle value) its behavior will be elastic and will return to its rest length or rest angle when the force exerted on it have subsided. If these values are exceeded, the Spring will deform plastically, i.e., it will not return to its rest length or angle and will remain deformed. A simple example: You have a Spring with a Rest Length of 100% and an Elastic Stretch Limit of 20 cm. If the Spring is pulled to a length of 150 cm its new Rest Length will be 130 cm (150 - 20 = 130).

只要弹簧在规定的范围内拉伸(从静止长度或静止角值开始) ,它的行为就是有弹性的,当施加在弹簧上的力减小时,弹簧就会恢复到其静止长度或静止角。如果超过这些值,弹簧就会发生塑性变形,也就是说,弹簧不会回到它的静止长度或角度,并且会保持变形。举个简单的例子: 你有一个静止长度为100% 的弹簧和一个20厘米的弹性拉伸极限。如果弹簧被拉到150厘米的长度,新的静止长度将是130厘米(150-20 = 130)。

Breaking Stretch
Value[0..+∞m]

断开拉伸值[0. . + ∞ m ]

Breaking Compression
Value[0..+∞m]

破坏压缩值[0. . + ∞ m ]

Breaking Stretch
Value[0..+∞°]

断裂伸展值[0. . + ∞ ° ]

Breaking Compression
Value[0..+∞°]

破坏压缩值[0. . + ∞ ° ]

If a Spring is stretched or compressed beyond the limits defined here (starting from the Rest Length or Rest Angle value) it will break, i.e., it will no longer behave as a spring – it will be disabled.

如果一个弹簧被拉伸或压缩超过这里定义的限制(从静止长度或静止角值开始) ,它就会断裂,也就是说,它将不再表现为一个弹簧-它将被禁用。