Stereoscopic
立体感
The stereoscopic camera settings let you define all properties having to do with the creation of two or more images whose perspectives are slightly offset. Detailed information regarding stereoscopy can be found here.
立体摄像机设置允许您定义与创建两个或多个图像有关的所有属性,这些图像的透视图略有偏移。关于体视的详细信息可以在这里找到。
Detailed information about Spherical Camera in VR Stereoscopy can be found here.
关于球面摄像机在 VR 立体显示中的详细信息可以在这里找到。
模式
女名女子名
This is the normal camera mode without stereoscopy.
这是没有立体镜的普通摄像机模式。
对称
Use this mode if you want to render normal stereoscopic images. A double camera will be assumed and each camera will be assigned half of the defined Eye Separation value, left and right, respectively.
如果要渲染正常的立体图像,请使用此模式。一个双摄像机将被假定和每个摄像机将被指定的眼睛分离值的一半,左和右,分别。
左/右
Depending on the parameters defined, both cameras will be positioned as follows on the Camera object’s X axis:
根据定义的参数,两台摄像机的位置都将在相机对象的 x 轴上如下:
眼距[0. . + ∞ m ]
This value defines the distance between the left and right eye. The default value of 6.5cm reflects the average distance between a human’s eyes. Normally, this value should be as small as possible. Greater values will produce a correspondingly larger spatial view but it will also become more strenuous for the viewer to view the scene. Exception: a scene, e.g., a landscape, is depicted that lies far away from the camera.
这个值定义了左眼和右眼之间的距离。默认值6.5厘米反映了人眼之间的平均距离。通常,这个值应该尽可能小。更大的数值相应地会产生更大的空间视图,但它也会变得更费力的观看场景。例外: 一个场景,例如,一幅风景画,被描绘成远离摄像机。
就业安排
Even though several options are available, most of them are only there for compatibility reasons. For stereoscopic double images you should always (with the exception of special circumstances) set Placement to Off Axis. Each example in the image above uses a double camera only. In the Render Setting’s stereoscopic settings, images can be set to render in channels, i.e., a scene can be rendered from any number of camera perspectives. Their arrangement will also be as shown above.
尽管有几个选项可用,但大多数选项只是出于兼容性的考虑。对于立体的双重图像,你应该总是(除了特殊情况外)设置为离轴位置。上图中的每个例子都只使用了一个双摄像头。在渲染设置的立体设置中,图像可以设置为在通道中渲染,也就是说,一个场景可以从任意数量的摄像机角度渲染。他们的安排也将如上所示。
平行
This is the most simple stereoscopic camera arrangement. Both cameras are positioned parallel to each other (the image axes are also parallel). Stereoscopic images with this type of arrangement only depict objects that lie in front of the projection plane. Hence, the null plane CANNOT be moved by modifying the Zero Parallax value (see also Zero Parallax). This is in contrast to the following three modes.
这是最简单的立体摄影机布置。两个摄像机的位置彼此平行(图像轴也是平行的)。这种排列方式的立体图像只描绘投影平面前方的物体。因此,零视差平面不能通过修改零视差值来移动。这与以下三种模式形成对比。
离轴
Basically the same camera arrangement as Parallel but with an offset (similar to Film Offset X), which means that the image axes are no longer parallel but intersect. The zero parallax lies at this point of intersection (see next setting, Zero Parallax). Objects can be depicted to lie spatially either in front of or behind the projection plane (i.e. in or in front of the monitor).
基本上相同的摄像机布局作为平行但有一个偏移(类似胶片偏移 x) ,这意味着图像轴不再平行,但相交。零视差位于这个交叉点(见下一个设置,零视差)。物体可以被描绘成在空间上位于投影平面的前面或后面(即显示器的前面或前面)。
Tip: 提示:轴心国
When this mode is selected, both cameras are rotated so their Z axes intersect with the zero parallax. This reflects approximately how the human eye works but is not recommended for the creation of stereoscopic images because a vertical parallax can result. This mode is also referred to as "toe-in".
当选择这种模式时,两个相机都会旋转,使它们的 z 轴与零视差相交。这大致反映了人眼是如何工作的,但不推荐用于立体图像的创建,因为垂直视差可能会导致。这种模式也被称为“趾-在”。
径向
This mode is similar to On Axis except that both cameras don’t lie on the Z axis but on an arc (whose center point lies on the point of intersection of both cameras’ zero parallaxes).
这种模式类似于在轴,除了两个相机不在 z 轴上,而是在一个弧(其中心点位于两个相机的零视差的交点)。
显示所有相机
Enable this option if both left and right cameras (instead of only a single camera) should be displayed in the Viewport.
启用这个选项,如果左右两个相机(而不是只有一个相机)都应该显示在视口。
零视差[0. . + ∞ m ]
The zero parallax is a virtual plane that lies vertically to the camera’s angle of view and defines where the projection plane lies, i.e., the plane that represents the monitor screen at its depth. Objects that lie in front of this plane in the direction of the camera protrude spatially out of the monitor in the direction of the viewer; objects that lie behind this plane lie "within" the monitor.
零视差是一个垂直于摄像机视角的虚拟平面,它定义了投影平面的位置,也就是说,表示监视器屏幕深度的平面。位于这个平面前方的物体在摄像机的方向上空间地突出于显示器的观察者的方向; 位于这个平面后面的物体在显示器的“内部”。
In the Viewport, the zero parallax is displayed as the dark green camera plane at the center.
在 Viewport,零视差显示为中心的深绿色摄像机平面。
If you link the Zero Parallax to the Focus Distance via XPresso you can adjust the zero parallax interactively in the Viewport using handles.
如果你通过 XPresso 链接零视差到对焦距离,你可以使用手柄在视口交互式地调整零视差。
Auto Planes
Near Plane[0..+∞m]
Far Plane[0..+∞m]
自动飞机近平面[0. . + ∞ m ]远平面[0. . + ∞ m ]
If you want to play it safe, select 90 and place all visible objects in the direction of the camera and behind this plane.
如果你想安全起见,选择90并且把所有可见的物体放在相机的方向和这个平面的后面。
The Auto Planes do not affect rendering! They only serve as visual references that you can adjust manually. If you determine via test renderings that the optimal spatial impression within a given distance from the camera has been achieved (objects that, for example, lie too close to the camera – while the zero parallax is positioned far away – can only be seen with great effort by the human eye), then you can define these planes accordingly and can place objects in the Viewport correctly within the resultingly restricted space.
自动飞机不影响渲染!它们只作为可以手动调整的视觉参考。如果你通过测试渲染确定在给定的距离内从相机获得了最佳的空间印象(例如,物体太靠近相机——而零视差定位在很远的地方——只有通过人眼的极大努力才能看到) ,那么你可以相应地定义这些平面,并且可以正确地将物体放置在 Viewport 中有限的空间内。
The options 70 and 90 represent a parallax of 70 and 90 arc seconds, respectively, for the near plane. These values are described in technical literature as values at which the human eye can perceive spatially with normal effort. Therefore, objects should lie behind this near plane.
选项70和90对于近平面分别代表70和90弧秒的视差。这些数值在技术文献中被描述为人类的眼睛可以用正常的努力感知空间的数值。因此,物体应该在这个近平面的后面。
A formula even exists that defines the maximum parallax (distance between red and cyan (anaglyph)):
甚至有一个公式可以定义最大视差(红色和青色之间的距离) :
P = tan a * D
Whereby P = Parallax, D = Distance of the viewer from the projection plane (e.g., the monitor), a = Angle between 2 points that the eye can comfortably perceive (this should be max. 1.5° or somewhat less).
从而 p = 视差,d = 观察者到投影平面的距离(例如,监视器) ,a = 两点之间的角度,眼睛可以舒适地感知(这应该是最大的。摄氏1.5度或以下)。
For a monitor and an average distance between eyes and monitor of 50 cm, an average reference value of 13 mm results.
对于显示器和眼睛之间的平均距离显示器50厘米,平均参考值13毫米的结果。
显示浮动框架
Enables or disables the display of critical regions (that can be seen by each camera). The Show All Cameras option must also be enabled.
启用或禁用关键区域的显示(每个摄像机都可以看到)。显示所有相机选项也必须启用。
Stereoscopic rendering with a Spherical Camera
基于球面摄像机的立体渲染
Special settings are available if you want to make the 360° view of a Spherical Camera stereoscopic. The left and right eye views will be combined to a single image (left = top; right = bottom).
特殊的设置,如果你想使360 ° 视图的球面相机立体。左右眼视图将合并为一个图像(左 = 上; 右 = 下)。
立体声模式
The following options are available:
以下方案可供选择:
The primary difference between both stereo modes lies in the definition of the null paralllaxe, i.e., the distance from the camera at which no parallaxe is generated. This spatial depth can be seen in the Viewport. If Toe-In is selected, the null parallaxe will be defined using the Focal Distance setting and cannot be subsequently modified. If Parallel is selected, the null parallaxe is infinite and can be subsequently modified (by moving the left and right perspectives).
两种立体模式之间的主要区别在于零平行的定义,即与摄像机之间没有产生视差的距离。这种空间深度可以在 Viewport 看到。如果选择 Toe-In,将使用焦距设置定义零视差,并且不能随后修改。如果选择平行,零视差是无限的,可以随后修改(移动左和右的透视)。
立体声布局
Here you can define how both stereo images should be arranged or which one should be rendered alone.
在这里,您可以定义立体图像应该如何排列或哪一个应该单独呈现。
眼距[0. . + ∞ m ]
This value defines the distance between both cameras/eyes. The default distance of 6.5 cm represents the average distance between human eyes.
这个值定义了两个相机/眼睛之间的距离。默认的6.5厘米的距离代表人眼之间的平均距离。
眼与颈之间的距离[0. . + ∞ m ]
Depending on which target model is rendered (this system works according to the Oculus Rift targeting system), you can define the horizontal distance from the neck "Atlas" (or C1) to the eyes (see image above). The Atlas is the rotational joint around which the head rotates, including the (forward-lying) eyes. The camera’s rotational point will therefore no longer lie at the center of both cameras if the Eye to Neck Distance is set to 0.
根据渲染的目标模型(这个系统根据 Oculus Rift 瞄准系统工作) ,你可以定义从颈部“ Atlas”(或 C1)到眼睛的水平距离(见上图)。寰椎是头部旋转的关节,包括前倾的眼睛。因此,如果眼与颈之间的距离设置为0,相机的旋转点将不再位于两个相机的中心。
焦距[0.01. . + ∞ m ]
If Stereo Mode is set to Toe-In, you can use this setting to define where the null parallaxe should lie. Objects that lie in front of this point and face in the camera’s direction of view will protrude out of the monitor towards the viewer; objects that lie behind this point will more-or-less "sink" into the monitor.
如果立体声模式设置为脚趾-在,你可以使用这个设置来定义应该在哪里的空视差。位于这一点前面的物体和面对摄像机视线方向的物体将从显示器向观众突出; 位于这一点后面的物体将或多或少地“下沉”到显示器中。
Top Pole Smoothing
Bottom Pole Smoothing
上极平滑下极平滑
For technical reasons, stereoscopy cannot be rendered correctly around the poles. To prevent unwanted artefacting, the stereo effect can be gradually faded in these regions. In most cases, this can be done with no problem because the visually important elements mostly occur horizontally around the camera’s location (and not vertically above or below it).
由于技术原因,立体画不能正确地在电线杆周围绘制。为了防止不必要的人工制品,立体效果可以逐渐淡出这些地区。在大多数情况下,这样做没有问题,因为视觉上的重要元素大多发生在相机位置的水平方向上(而不是垂直方向上或垂直方向下)。
The smoothing can be defined separately for top and bottom poles. In the region in which the smoothing takes place the views will be equalized with the left and right cameras until they are identical with the maximum possible smoothing. The smoothing types are described below.
平滑可以分别定义顶极和底极。在进行平滑处理的区域,视图将与左右摄像机平衡,直到它们与最大可能的平滑处理完全相同。下面描述了平滑类型。
Top Smoothing Angle[-90..0°]
Top Pole Exp[0..10]
Bottom Smoothing Angle[0..90°]
Bottom Pole Exp[0..10]
上平滑角[-90. . 0 ° ]上极指数[0. . 10]下平滑角[0. . 90 ° ]下极指数[0. . 10]
How smoothing will be done from the start to the pole is determined by the using the Linear option (with linearly increasing strength, i.e., abrupt deployment) or the Exponential (with exponentially increasing strength, i.e., gradual deployment) using the defined defined Smoothing Angle. The Top/Bottom Polx Exp settings can be used to affect the Exponential option.
如何从一开始到极点进行平滑是由使用线性选项(线性增加强度,即突然部署)或指数(指数增加强度,即渐进部署)使用定义的平滑角确定的。Top/Bottom Polx Exp 设置可以用来影响 Exponential 选项。