Transform Vector
变换矢量
Preview 预览Basic 基础Inputs 投入Outputs 产出Transform Vector
变换矢量
There are two types of vectors that can be calculated – a position vector and a direction vector. The position vector starts at the origin of a coordinate system (for point coordinated, for example, at the origin of the object axis system) and its components define how far the point lies from this axis system.
可以计算的矢量有两种类型——位置矢量和方向矢量。位置矢量从坐标系的原点开始(例如,对于协调的点,在对象轴系统的原点) ,它的组成部分定义了点离这个轴系统的距离。
A direction vector has no start or end point – it only defines a direction. Seen from the outside, it’s not immediately obvious what the respective vector does, i.e., if it defines a position or a direction. Therefore, when modifying vectors, it’s important to make sure which vector type you’re dealing with. This applies in particular when a vector is multiplied by a matrix. This is always necessary when converting local coordinates to global and vice-versa.
方向矢量没有起点或终点,它只定义一个方向。从外面看,不能立即看出各自的矢量是干什么的,例如,如果它定义了一个位置或一个方向。因此,在修改向量时,一定要确保要处理的是哪种类型的向量。当一个向量与一个矩阵相乘时,这一点尤其适用。在将局部坐标转换为全局坐标时总是需要这样做,反之亦然。
If a local point coordinate (position vector) should be multiplied by an object’s matrix a global position for the point will result. If we want to multiply a local direction vector, e.g., the X axis direction of a local coordinate system, i.e., the vector (1, 0, 0), with the object’s matrix but the global direction of the X axis should be output and not a position in space. This is why the Node makes it possible to select which calculation should be used.
如果一个局部点坐标(位置向量)应该乘以一个对象的矩阵,一个全局位置的点将产生。如果我们想乘以一个局部方向向量,例如,一个局部坐标系的 x 轴方向,也就是矢量(1,0,0) ,与对象的矩阵,但 x 轴的全局方向应该是输出,而不是空间中的一个位置。这就是为什么 Node 可以选择应该使用哪种计算。